Stochastic Least-Action Principle for the Incompressible Navier-Stokes Equation

نویسنده

  • Gregory L. Eyink
چکیده

We formulate a stochastic least-action principle for solutions of the incompressible Navier-Stokes equation, which formally reduces to Hamilton’s principle for the incompressible Euler solutions in the case of zero viscosity. We use this principle to give a new derivation of a stochastic Kelvin Theorem for the Navier-Stokes equation, recently established by Constantin and Iyer, which shows that this stochastic conservation law arises from particle-relabelling symmetry of the action. We discuss issues of irreversibility, energy dissipation, and the inviscid limit of Navier-Stokes solutions in the framework of the stochastic variational principle. In particular, we discuss the connection of the stochastic Kelvin Theorem with our previous “martingale hypothesis” for fluid circulations in turbulent solutions of the incompressible Euler equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turbulent Flow over Cars

In this paper the flow behaviour over a number of car bodies is studied. For this purpose the unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and nondimensionalizing the equations, the system of equations has been transformed from the Cartesian (x-y) coordinates to a body fitted generalized (-) coordinate. As the flow is incompressible, the density in the ...

متن کامل

ar X iv : m at h / 06 11 72 1 v 1 [ m at h . PR ] 2 3 N ov 2 00 6 A LATTICE GAS MODEL FOR THE INCOMPRESSIBLE NAVIER - STOKES EQUATION

We recover the Navier-Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a meso-scopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier-Stokes equation in a fixed time interval. The proof does not use non-gradient methods or the multi-scale analysis due to the long range jumps.

متن کامل

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

On the dynamic programming approach for the 3D Navier-Stokes equations

The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed.

متن کامل

A Posteriori Modeling Error Estimates for the Assumption of Perfect Incompressibility in the Navier-Stokes Equation

We derive a posteriori estimates for the modeling error caused by the assumption of perfect incompressibility in the incompressible NavierStokes equation: Real fluids are never perfectly incompressible, but always feature at least some low amount of compressibility. Thus, their behavior is described by the compressible Navier-Stokes equation, the pressure being a steep function of the density. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008